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Derivation of the tensile stress-strain 
curve from bending data 

V. LAWS 
Building Research Station, Building Research Establishment, Garston, Watford, UK 

A method for calculating uniquely, the stress-strain curves in tension and compression 
from bending data, is described. The application of the method to cement-based 
composites is illustrated and the results compared with tensile curves measured directly. 

List of symbols 
a stress AM increase in moment 
AXa increase in stress y distance from neutral axis in bending 
a a apparent stress on the outer faces of a beam, d sample thickness 

calculated assuming a linear elastic beam in b sample width 
pure bending c d / (e t  - -  ee) 

e strain A area under tensile or compressive stress/strain 
Axe increase in strain curve 
Y Axa/Ae AXA increase in area 
F force Subscripts t and c refer to tension and com- 
M moment pression respectively. 

1. Introduction 
Composites based on the reinforcement of a brittle 
material by glass or other fibres are usually non- 
linear in response to stress, and because of this 
show a response in bending apparently different 
from that in tension. Allen [1] and others have 
previously shown how the response in bending can 
be predicted from observed stress-strain curves in 
tension and compression; and Aveston e t  al. [2] 
have derived an analytical expression for the 
flexural strength in terms of the composition and 
properties of the components. 

However, the bending curves predicted from 
measured tensile curves usually fall short of those 
measured directly, and in particular the apparent 
strain at failure in bending is often higher than 
that predicted. Laws and Ali [3] have shown that 
a stress capacity after failure in tension can lead 
to an increase in the strain at "failure" (i.e. at the 
maximum stress) in bending. 

Laws and Walton [4] have outlined a method 
which uses data from a bending test to derive 
tensile stress-strain curves indirectly, for com- 
parison with tensile curves measured directly. In 

this paper, the method is described in detail, and 
its application is discussed. 

2. Theoretical details 
Consider a rectangular beam of thickness d and 
width b, in pure bending under a bending moment 
M. The stress-strain relationships in tension and 
compression are described by the functions et(e) 
and % ( e ) ,  respectively. Under pure bending, the 
longitudinal strains vary linearity with distance 
from the neutral axis, i.e. 

y = ce, (1) 

where y is the distance from the neutral axis, and 
c is a function of the outermost strains e t and e e: 

c = d / (e t  - -  ec). (2)  

The convention that compressive stresses and 
strains are negative, is used. 

It is assumed that plane sections remain plane; 
that the material is uniform in properties and that 
creep is negligible. 

There are two conditions that apply, namely 
(i) The total normal force acting on any cross- 
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section is zero; i.e. the tensile forces are balanced 
by the compressive forces: 

~, F(y)  = O. 

Using Equation 1 it follows that 

bc oe(e) de + at(e) de = 0, (3) 
13 

and the areas A t and Ae under the tensile and 
compressive stress-strain curves must be equal; 

(ii) the total moment of the forces about the 
neutral axis is equal to the applied moment, M, i.e. 

M = E F(y)y  

= O,,,, , ,]  ,4, 

Equations 3 and 4 allow two "unknowns" to be 
calculated. 

2.1. Prediction of the bending curve from 
tensile data 

To calculate the bending curve from tension and 
compression data, Equation 3 is used to find the 
strain on the compressive face for a given strain 
(and stress) on the tensile face. This locates the 
position of the neutral axis. The bending moment 
then follows from Equation 4. 

The apparent stress on the outer faces of  the 
beam, i.e. the stress that would apply if the beam 
were linearly elastic, is given by 

6M 
o a  - b d  ~ (5) 

and is related to the bending moment by a 
numerical constant. 

If  the response in compression is linear, and the 
tensile curve can be represented by idealized 
"curves" the calculations are simple; and for stress- 
strain "curves" predicted by the ACK theory [5], 
analytical expressions can be written. However, 
where the curves in both tension and compression 
are non-linear the calculation of the strain on the 
compression face requires an iterative process; 
and the integrations are carried out numerically. 

For the composites described later in this 
paper, it was assumed that the material was linear 
in compression with modulus equal to the initial 
modulus in tension. The location of the neutral 
axis is then simplified; but unless the equation for 
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the tensile response is known, the calculation of 
the contribution of the tensile forces to the 
moment about the neutral axis, can only be per- 
formed numerically. 

2.2. Deduction of the tensile and 
compression curves from bending 

In Section 2.1, the stress-strain curves in tension 
and compression were "known", and Equations 3 
and 4 were used to calculate the position of the 
neutral axis, and the bending moment. If the strains 
on the outer faces of  the beam and the applied 
bending moment are known, it is equally valid to 
use Equations 3 and 4 to calculate the stress-strain 
curves in tension and compression. The method is 
not new [6], but does not appear to have been 
widely used. 

It consists of the progressive calculation of the 
tensile and compressive stresses corresponding to 
the measured strain pairs as the bending moment 
increases. The progressively reconstructed tensile 
and compression stress-strain curves are used in 
the calculation of each subsequent tensile and 
compressive stress pair, as described in the 
Appendix. 

The derivation of the stress pairs involves terms 
(see Equation A5 of the Appendix) that are 
extremely sensitive to the accuracy of strain 
measurement. However, each calculation depends 
on the previous ones; and an underestimate in one 
case will be "balanced" by an overestimate in the 
calculation of the next point. The res~Jlt is that 
large fluctuation can occur in the stress pairs calcu- 
lated as the strain is increased, particularly if the 
strain intervals chosen are small. 

The procedure that has been adopted therefore 
is to "smooth" the calculated tensile and compres- 
sive stress-strain curves by a process of taking 
successive averages. 

3. Application and discussion 
Bending tests (four point) and tensile tests were 
carried out using Instron testing machines, models 
TTCM and 1115, respectively. Tensile tests were 
done at a constant rate of increase of  strain; 
bending tests were carried out at a constant rate of 
cross-head travel, at a rate calculated to give a 
rate of strain increase approximately equal to that 
used in the tensile tests. 

Fig. 1 shows results for an asbestos cement. 
Curves A and A' show the apparent stress in bend- 
ing, a a (Equation 5) as a function of the measured 



4O 

.~ 30 

�9 ~ 2 0  

10 

- 0 1 3  _0 !2  

A/,; 

% 
/ 

/ 
/ '  

/ 
,, 

/ 
% c a l c u l a t e d  

% measu red  

B . 

_ .-.;, '" : X ca lcu la ted  

/ /  -o 

/ i I . . .  
- :1 - '%.. .o. . . ,~ I " . .  

m e a s u r e d  ~ "" 

! I I I I 

0.1 0.2 0'3 0 '4  
S t r a i n  (%) 

- -10  

- - 2 0  

- - 3 0  

- - 4 0  

- 5 0  

Figure 1 The apparent stress in bend- 
ing as a function of  measured strains 
on the tensile and compressive faces 
(curves A and A', respectively) and 
the tension and compression curves 
(curves B and B')  deduced from the 
bending data. Curve C is a measured 
tensile curve for the same material 
(an asbestos cement).  

strains; curves B and B' show the tensile and com- 
pressive stress-strain curves deduced from that 
data. A measured tensile stress-strain curve for 
the same material is shown in C. The calculated 
and measured tensile stress-strain curves are 
similar, but that calculated from bending 
apparently continues to a higher strain. 

The results for a grc composite containing 4.8% 
by weight of Cem-FIL* fibres 32mm in length, 
and stored for 14 months in air at 40% RH and 
20 ~ C are shown in Fig. 2. 

The strains were measured using an LVDT 
extensometer [7] which measured changes in 
linear length (chord). A correction was made t o  
obtain changes in arc length (i.e. strains on the 
tensile and compression faces of the beam in 
bending). The  strains achieved on both faces were 
high - over 1% on the tensile face and over 0.3% 
on the compression face. The tensile curve calcu- 
lated from the bending data closely resembles that 
measured (in both tension and bending, three 

*Trademark of  Fibreglass Ltd,  a Pilkington Bros subsidiary. 

samples were tested and the results of each set 
were similar), except that it continues to a high 
strain (and stress). The calculated compression 
stress-strain curve is slightly non-linear up to 
approximately 60MNm-2; there is then an 
apparent stiffening, and at maximum (calculated) 
stress on the tensile face, the compression face 
supported a (calculated) stress of approximately 
100 MNm -~ at a strain of about 0.3%. 

The reason for this apparent change in slope of 
the compression stress-strain curve has yet to be 
explained. The compressive strength of grc is 
reported to be 60 to 100MNm -2, and it is 
possible, therefore, that failure occurs in compres- 
sion, but leads to stiffening by obstruction of the 
"failed" region. 

For wire-reinforced cements and mortars, some 
data [8, 9] taken from the literature has been 
analysed. Krenchel [8] measured the strains on the 
tensile and compressive faces of prisms in bending. 
The prisms consisted of mortar reinforced with a 
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Figure 2 As Fig. 1 for a ductile 
grc. 

2 vol % three-dimensional array of steel fibre, and 
the curve in bending rose continuously after the 
limit of proportionality, with no visible cracking 
before failure. Krenchel's data, together with the 
tension and compression curves deduced from the 
bending data are shown in Fig. 3. The deduced 
tensile curve shows a long "tail" beyond cracking, 
at a stress not very different from the cracking 
stress. This might imply some multiple cracking, 
assuming that this can occur at approximately 
constant stress. Analysis of Edgington's data [9] 
leads to deduced tensile stress-strain curves that 
show a long tail after "failure". Unfortunately there 
are no tensile stress-strain curves available with 
which to compare these deduced - the (direct) 
tensile curves measured by Edgington did not 
record any post failure stresses. However, Shah 
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[10] reported the results of tests designed to 
measure the full stress-strain curves in tension 
of cement mortars reinforced with 1.73vo1% 
fibre. His results show slowly decreasing stress 
after failure implying single failure only. While 
there can be no strict comparison between the 
three sets of results since the composites were 
different, tensile curves deduced from Krenchel's 
[8] and Edgington's [9] data are generally in line 

w i th  those observed by Shah [10]. 

4. Conclusions 
A method has been described for calculating ten- 
sile and compressive curves from bending data. 
The method leads to unique results. The deduced 
tensile curves closely resemble those measured 
directly, e~cept that they continue to higher 
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Figure 3 Wire-reinforced mortar, 
Data (A and A') from [8] and 
tension and compression curves (B 
and B') calculated from those data. 

strains. The reason for this has yet to be investi- 
gated fully, but it could reflect a distribution of 
materials properties (a "size effect"). 

Further work is also needed to explain the 
shape of compression curve deduced in some cases, 
and in particular the apparent yield and stiffening 
at higher stresses. Work in both these areas is in 
progress. 

Acknowledgements 
I am grateful to Mr A. A. Langley and Mr P. L. 
Walton for providing the experimental data shown 
in Figs 1 and 2, respectively. The work described 
has been carried out as part of the research pro- 
gramme of the Building Research Establishment of  
the Department of the Environment and this paper 
is published by courtesy of the Director, Building 
Research Establishment, and by permission of the 
Controller HMSO, holder of Crown Copyright. 

A p p e n d i x  

(1)Suppose that under a measured bending 
moment Me sufficiently small that it can be 
assumed that both strains are below the elastic 

limit, the measured strains on the tensile and com- 
pressive faces are ere and er respectively. The 
stresses corresponding to these strains are ate and 
0 " r  

The balance of forces condition requires that 
the areas under the tension and compression 
stress-strain curves are equal, i.e. Ate = Ace , i.e. 

�89 = �89 ~v~tO 
and 

Yeo = Yto(eto/eeo) 2, (A1) 
where 

Yto = Oto/et0 and Yco = ace~Coo. 

The second condition requires that the total 
moment of the forces F ( y )  about the neutral axes 
equals the applied moment Me, 

Mo = bc 2 f Et~ e(e) e de (A2a) 
"J~cO 

bd 2 
1 3 3 

- - -  Yco eco). ( A 2 )  (eto --  eco) 2 ~ (Yt~ et~ 

On substitution of Equation A1 into A2, Yto and 
hence ato can be calculated. Yco and hence eco 
then follow from Equation A1. 
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(2) Let the bending moment be increased by 
AM to  M1, and the measured strains by Act and 
Ace to etl and eel respectively; the (unknown) 
stresses are ot~ and oct. 

The analysis applies regardless of  whether either 
or both these stresses are within or beyond the 
elastic limit/limits, and they may be greater or 
less than the previously calculated stresses. The 
only assumption made is that stress changes 
linearly with strain from Ore to Otl and ace to 
eel respectively. This is not an unreasonable 
assumption, particularly if the strain intervals used 
are small. 

The balance of forces condition requires that 
the total areas under the tensile and compression 
stress-strain curves are equal. This reduces to 

AAt = AAc (A3) 

where AA t and AAe are the increases in area when 
the applied moment is increased by AM. Then, 
putting 

Ytl = (Or1-- Oto)/Aet 
and 

Yel = ( e e l - -  Oeo)/Aee, 

it follows that 

Aet(oto + �89 = Aec(ac0 + �89 

from which 
Yel = ao + al Ytt (A4) 

where 
ao = 2Aetoto/(Aec) 2 -  2Oco/Aee 

and 
al = (Aet/Aec) 2. 

The total moment about the (new) neutral axis is 

etl o(e)  e de - bd2 
M1 = bc 2 :eel ( e t l _  ecl) 2 

" . 1  

The first integral in the above expression is from 
Equation A2a, equal to 

Mo(et o -- eeo) 2 
bd 2 

It follows that 

M1 = a2 + aaY t l  + a4Ycx (A5) 
where 

2 

- o " :  1 o " :  - e l)] • t~ to~ t l  - -  e~o) + ~r eo~ eo 

bd 2 
_ 1 3 e 3  1 e ,, 2 

a3 ( e t l  _ e e l )  2 - -  t o ) - -  t o t e . - -  e o)] 

bd 2 
1 3 3 1 2 2 

- ( e t l  - %0 e , . )  -  eeo(eoo-- 

Equations A4 and A5 can then be solved for Ytl 
and Yel, and hence for otl and ael. 

(3) Successive stress pairs are calculated pro- 
gressively in this way, using the previous infor- 
mation as it is accumulated (i.e. Me, ere, ee0 in 
Equations A4 and A5 become M1, etl, eel; M1, 
etl, eel become M2, et2, ee2, and so on). 

The calculation is easily carried out using a 
programmable calculator or computer and requires 
only a simple, straightforward program. 

References  

1. H.G. ALLEN, J. Comp. Mater. 5 (1971) 194. 
2. J. AVESTON, R. A. MERCER and J. M. 

SILLWOOD, Composites - standard testing and 
design, Conference Proceedings, NPL, 8-9 April 
1974 (IPC, London, 1974) p. 93. 

3. V. LAWS and M. A. ALI, Fibre reinforced materials: 
Design and engineering applications, Conference 
Proceedings, Institution of Civil Engineers, London, 
March 1977 (ICE, London, 1977) p. 115. 

4. V. LAWS and P. L. WALTON, RILEM Symposium, 
1978, Testing and test methods of fibre cement 
composites (The Construction Press, Lancaster, 
1978) p. 429. 

5. J. AVESTON, G. A. COOPER and A. KELLY, The 
properties of fibre composites, Conference Proceed- 
ings, NPL, 4 November 1971 (IPC, London 1971) 
p. 15. 

6. A. NADAI, "Plasticity", Engineering Societies 
Monographs (McGraw-Hill, New York and London, 
1931) p. 165. 

7. R.C. DE VEKEY, J. Mater. ScL 9 (1974) 1898. 
8. H. KRENCHEL, Structural Research Laboratory, 

Technical University of Denmark, Rapport Nr R42 
(1973). 

9. J. EDGINGTON, PhD thesis, University of Surrey 
(1974). 

10. S.P. SHAH, RILEM Symposium, 1978, Testing and 
Test methods of fibre reinforced composites (The 
Construction Press, Lancaster, 1978) p. 399. 

Received 6 October and accepted 10 November 1980. 

1304 


